QUADRATIC MOCK 1

- 1. If (1 - p) is a root of quadratic equation $x^2 + px + (1 - p) = 0$ then its roots are-(B) -1, 1 (C) 0, -1 (D) -1, 2
- 2. If x is a solution of the equation, $\sqrt{2x+1} - \sqrt{2x-1} = 1, \left(x \ge \frac{1}{2}\right),$

then $\sqrt{4x^2-1}$ is equal to :

- (A) $\frac{1}{2}$ (B) 2 (C) $2\sqrt{2}$ (D) $\frac{3}{4}$
- The equation $\sqrt{3x^2 + x + 5} = x 3$, where x 3. is real, has:
 - (A) No solution
 - (B) Exactly one solution
 - (C) Exactly two solution
 - (D) Exactly four solution
- 4. The roots of the equation $(a^2 + b^2) x^2 - 2(bc + ad) x + (c^2 + d^2) = 0$ are equal, if -
 - (A) ab = cd
- (B) ac = bd
- (C) ad + bc = 0
- (D) None of these
- Roots of the equation 5. $(a + b - c)x^2 - 2ax + (a - b + c) = 0$ $(a, b, c \in Q)$ are -
 - (A) rational
- (B) irrational
- (C) complex
- (D) none of these
- 6. If the roots of the equation $ax^2 + x + b = 0$ be real, then the roots of the equation $x^2 - 4\sqrt{ab} x + 1 = 0$ will be -
 - (A) Rational
- (B) Irrational
- (C) Real
- (D) Imaginary

- 7. If roots α and β of the equation $x^2 + px + q$ = 0 are such that $3\alpha + 4\beta = 7$ and $5\alpha - \beta = 4$, then (p, q) is equal to -
 - (A) (1, 1)
- (B) (-1, 1)
- (C) (-2, 1)
- (D)(2,1)
- If one root of the equation $x^2 30x + p = 0$ 8. is square of the other, then p is equal to-
 - (A) 125, 216
- (B) 125, -216
- (C) Only 125
- (D) Only -216
- If the equation $\frac{a}{x-a} + \frac{b}{x-b} = 1$ has roots 9. equal in magnitude but opposite in sign,

then the value of a + b is -

- (A) 1
- (C) 1
- (D) None of these
- **10.** If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is-
 - (A) (-3, 3)
- (B) (-3, ∞)
- (C) $(3, \infty)$
- (D) $(-\infty, -3)$
- 11. If α and β are the roots of the equation $x^2 - x + 1 = 0$, then $\alpha^{2009} + \beta^{2009} =$
 - (A) -2 (B) -1
- (C) 1
- 12. Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in A.P.

and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $|\alpha - \beta|$

is -

- If roots of quadratic equation $ax^2 + bx + c = 0$ 13. are α and β then symmetric expression of its roots is -
 - (A) $\frac{\alpha}{\beta} + \frac{\beta^2}{\alpha}$
- (B) $\alpha^2 \beta^{-2} + \alpha^{-2} \beta^2$
- (C) $\alpha^2\beta + 2\alpha\beta^2$
- (D) $\left(\alpha + \frac{1}{\alpha}\right) \left(\beta + \frac{1}{\alpha}\right)$
- The quadratic equation with one root $\frac{1}{1+i}$ 14.
 - (A) $2x^2 + 2x + 1 = 0$ (B) $2x^2 2x + 1 = 0$

 - (C) $2x^2 + 2x 1 = 0$ (D) $2x^2 2x 1 = 0$
- **15.** If α and β are roots of $x^2 - 2x + 3 = 0$, then the equation whose roots are $\frac{\alpha-1}{\alpha+1}$ and
 - $\frac{\beta-1}{\beta+1}$ will be -
 - (A) $3x^2 2x + 1 = 0$ (B) $3x^2 + 2x + 1 = 0$

 - (C) $3x^2 2x 1 = 0$ (D) $x^2 3x + 1 = 0$
- The roots of the equation $ax^2 + bx + c = 0$ 16. will be imaginary if -
 - (A) a > 0, b = 0, c < 0
 - (B) a > 0, b = 0, c > 0
 - (C) a = 0, b > 0, c > 0
 - (D) a > 0, b > 0, c = 0
- **17.** If roots of the equation $\ell x^2 + mx - 2 = 0$ are reciprocal of each other, then-
 - (A) $\ell = 2$
- (B) $\ell = -2$
- (C) m = 2
- (D) m = -2
- If one of the roots of $x(x + 2) = 4 (1 ax^2)$ 18. tends ∞ , then a will tend to-
 - (A) 0
- (B) -1
- (C) 1
- (D) 2

- 19. If both the roots of the equations $k(6x^2 + 3) + rx + 2x^2 - 1 = 0 & 6k(2x^2 + 1)$ $+ px + 4x^2 - 2 = 0$ are common, then 2r - pis equal to -
 - (B) 1(A) 1 (C) 2 (D) 0
- **20.** The quadratic equations $x^2 6x + a = 0$ and $x^2 - cx + 6 = 0$ have one root in common. The other roots of the first and second equations are integers in the ratio 4:3. Then the common root is
 - (A) 4
- (B) 3

- **21.** If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, a, b, $c \in \mathbb{R}$, have a common root, then a : b : c is -
 - (A) 1:3:2
- (B) 3:1:2
- (C) 1:2:3
- (D) 3:2:1
- 22. If the sum of the roots of the equation $ax^2 + bx + c = 0$ is equal to the sum of the square of their reciprocal, then-
 - (A) c^2b , a^2c , b^2a are in A.P.
 - (B) c^2b , a^2c , b^2a are in G.P.
 - (C) $\frac{b}{a}$, $\frac{a}{b}$, $\frac{c}{a}$ are in H.P.
 - (D) $\frac{b}{c}$, $\frac{a}{b}$, $\frac{c}{a}$ are in G.P.
- **23.** If the quadratic equations $3x^2 + ax + 1 = 0$ and $2x^2 + bx + 1 = 0$ have a common root, then the value of the expression $5ab - 2a^2 3b^2$ is -
 - (A) 0
- (B) 1
- (C) -1
- (D) None of these
- **24.** If x is the real, then the value of the expression $\frac{2x^2+4x+1}{x^2+4x+2}$ is -
 - (A) any number
 - (B) only positive number
 - (C) only negative number
 - (D) only 1

- **25.** If $7^{\log_7(x^2-4x+5)} = x 1$, x may have values -
 - (A) 2, 3
- (B) 7
- (C) 2, -3
- (D) 2, -3
- **26.** If α , β are roots of the equation

$$(3x + 2)^2 + p(3x + 2) + q = 0$$
, then roots of $x^2 + px + q = 0$ are -

- (A) α , β
- (B) $3\alpha + 2$, $3\beta + 2$
- (C) $\frac{1}{3}(\alpha-2), \frac{1}{3}(\beta-2)$
- (D) $\alpha 2$, $\beta 2$
- **27.** For what value of a the curve $y = x^2 + ax + 25$ touches the x-axis-
 - (A) 0

- $(B) \pm 5$
- (C) ± 10
- (D) None of these
- 28. The roots of the equation $2a^2x^2 - 2abx + b^2 = 0$ when a < 0 and b > 0 are [2014-I]
 - (A) Sometimes complex
 - (B) Always irrational
 - (C) Always complex
 - (D) Always real
- **29.** If α , β are the roots of $ax^2 + bx + c = 0$ and a + h, $\beta + h$ are the roots of $px^2 + qx + r = 0$, then what is h equal to?

 - (A) $\frac{1}{2} \left(\frac{b}{a} \frac{q}{p} \right)$ (B) $\frac{1}{2} \left(-\frac{b}{a} + \frac{q}{p} \right)$

 - (C) $\frac{1}{2} \left(\frac{b}{p} + \frac{q}{a} \right)$ (D) $\frac{1}{2} \left(-\frac{b}{p} + \frac{q}{a} \right)$
- Consider the following statements in respect of the given equation:

$$(x^2 + 2)^2 + 8x^2 = 6x(x^2 + 2)$$

- 1. All the roots of the equation are complex
- The sum of all the roots of the equation is 6.

Which of the above statements is/are correct? [2015-I]

- (A) 1 only
- (B) 2 only
- (C) Both 1 and 2
- (D) Neither 1 nor 2

